Source code for minizinc.instance

#  This Source Code Form is subject to the terms of the Mozilla Public
#  License, v. 2.0. If a copy of the MPL was not distributed with this
#  file, You can obtain one at http://mozilla.org/MPL/2.0/.
import asyncio
import contextlib
import json
import logging
import os
import re
import sys
import tempfile
import warnings
from dataclasses import asdict, field, is_dataclass, make_dataclass
from datetime import timedelta
from enum import EnumMeta
from keyword import iskeyword
from numbers import Number
from pathlib import Path
from typing import (
    Any,
    AsyncIterator,
    Dict,
    Iterator,
    List,
    Optional,
    Set,
    Tuple,
    Type,
    Union,
)

import minizinc

from .analyse import InlineOption, MznAnalyse
from .driver import Driver
from .error import ConfigurationError, MiniZincError, parse_error
from .json import (
    MZNJSONDecoder,
    MZNJSONEncoder,
    decode_async_json_stream,
    decode_json_stream,
)
from .model import Method, Model, ParPath, UnknownExpression
from .result import Result, Status, set_stat
from .solver import Solver

if sys.version_info >= (3, 8):
    from typing import Final

    SEPARATOR: Final[bytes] = str.encode("----------" + os.linesep)
else:
    SEPARATOR: bytes = str.encode("----------" + os.linesep)


class _GeneratedSolution:
    pass


[docs] class Instance(Model): """Representation of a MiniZinc instance in Python. Raises: MiniZincError: when an error occurs during the parsing or type checking of the model object. """ _driver: Driver _solver: Solver _input_cache: Optional[Dict[str, Type]] = None _output_cache: Optional[Dict[str, Type]] = None _method_cache: Optional[Method] = None _has_output_item_cache: Optional[bool] = None _parent: Optional["Instance"] = None _field_renames: List[Tuple[str, str]] def __init__( self, solver: Solver, model: Optional[Model] = None, driver: Optional[Driver] = None, ): super().__init__() self._solver = solver self._field_renames = [] if driver is not None: self._driver = driver elif minizinc.default_driver is not None: self._driver = minizinc.default_driver else: raise Exception("No compatible driver provided") if model is not None: self.output_type = model.output_type self._includes = model._includes.copy() self._code_fragments = model._code_fragments.copy() self._data = dict.copy(model._data) self._enum_map = dict.copy(model._enum_map) self._checker = True # Generate output_type to ensure the same type between different # instances of the same model if self.output_type is None: self.analyse() model.output_type = self.output_type
[docs] def solve( self, time_limit: Optional[timedelta] = None, nr_solutions: Optional[int] = None, processes: Optional[int] = None, random_seed: Optional[int] = None, all_solutions: bool = False, intermediate_solutions: Optional[bool] = None, free_search: bool = False, optimisation_level: Optional[int] = None, timeout: Optional[timedelta] = None, **kwargs, ) -> Result: """Solves the Instance using its given solver configuration. Find the solutions to the given MiniZinc instance using the given solver configuration. First, the Instance will be ensured to be in a state where the solver specified in the solver configuration can understand the problem and then the solver will be requested to find the appropriate solution(s) to the problem. Args: time_limit (Optional[timedelta]): Set the time limit for the process of solving the instance. nr_solutions (Optional[int]): The requested number of solution. (Only available on satisfaction problems and when the ``-n`` flag is supported by the solver). processes (Optional[int]): Set the number of processes the solver can use. (Only available when the ``-p`` flag is supported by the solver). random_seed (Optional[int]): Set the random seed for solver. (Only available when the ``-r`` flag is supported by the solver). free_search (bool): Allow the solver to ignore the search definition within the instance. (Only available when the ``-f`` flag is supported by the solver). all_solutions (bool): Request to solver to find all solutions. (Only available on satisfaction problems and when the ``-a`` flag is supported by the solver) intermediate_solutions (Optional[bool]): Request the solver to output any intermediate solutions that are found during the solving process. If left to ``None``, then intermediate solutions might still be requested to ensure that the solving process gives its final solution. (Only available on optimisation problems and when the ``-i`` or ``-a`` flag is supported by the solver) optimisation_level (Optional[int]): Set the MiniZinc compiler optimisation level. - 0: Disable optimisation - 1: Single pass optimisation (default) - 2: Flatten twice to improve flattening decisions - 3: Perform root-node-propagation - 4: Probe bounds of all variables at the root node - 5: Probe values of all variables at the root node **kwargs: Other flags to be passed onto the solver. ``--`` can be omitted in the name of the flag. If the type of the flag is Boolean, then its value signifies its occurrence. Returns: Tuple[Status, Optional[Union[List[Dict], Dict]], Dict]: tuple containing solving status, values assigned in the solution, and statistical information. If no solutions is found the second member of the tuple is ``None``. Raises: MiniZincError: An error occurred while compiling or solving the model instance. """ coroutine = self.solve_async( time_limit=time_limit, nr_solutions=nr_solutions, processes=processes, random_seed=random_seed, all_solutions=all_solutions, intermediate_solutions=intermediate_solutions, free_search=free_search, optimisation_level=optimisation_level, timeout=timeout, **kwargs, ) try: if sys.platform == "win32": asyncio.set_event_loop_policy( asyncio.WindowsProactorEventLoopPolicy() ) return asyncio.run(coroutine) except RuntimeError as r: coroutine.close() del coroutine if "called from a running event loop" in r.args[0]: raise RuntimeError( "the synchronous MiniZinc Python `solve()` method was called from" " an asynchronous environment.\n\nBecause Python's asyncio library" " does not support using multiple event loops that would be" " required to use this method, we instead suggest you use the" " `solve_async()' method or patch Python behaviour with a package" " such as `nested_asyncio'.\n\nOriginal message: " + str(r) ) from r else: raise r
[docs] async def solve_async( self, time_limit: Optional[timedelta] = None, nr_solutions: Optional[int] = None, processes: Optional[int] = None, random_seed: Optional[int] = None, all_solutions: bool = False, intermediate_solutions: Optional[bool] = None, free_search: bool = False, optimisation_level: Optional[int] = None, timeout: Optional[timedelta] = None, **kwargs, ) -> Result: """Solves the Instance using its given solver configuration in a coroutine. This method returns a coroutine that finds solutions to the given MiniZinc instance. For more information regarding this methods and its arguments, see the documentation of :func:`~MiniZinc.Instance.solve`. Returns: Tuple[Status, Optional[Union[List[Dict], Dict]], Dict]: tuple containing solving status, values assigned, and statistical information. Raises: MiniZincError: An error occurred while compiling or solving the model instance. """ status = Status.UNKNOWN statistics: Dict[str, Any] = {} multiple_solutions = ( all_solutions or intermediate_solutions or nr_solutions is not None ) solution: Union[Optional[Any], List[Any]] = ( [] if multiple_solutions else None ) async for result in self.solutions( time_limit=time_limit, nr_solutions=nr_solutions, processes=processes, random_seed=random_seed, all_solutions=all_solutions, intermediate_solutions=intermediate_solutions, free_search=free_search, optimisation_level=optimisation_level, timeout=timeout, **kwargs, ): status = result.status statistics.update(result.statistics) if result.solution is not None: if multiple_solutions: assert isinstance(solution, list) solution.append(result.solution) else: solution = result.solution return Result(status, solution, statistics)
[docs] async def diverse_solutions( self, num_diverse_solutions: Optional[int] = None, reference_solution: Optional[Union[Result, Dict]] = None, mzn_analyse: Optional[MznAnalyse] = None, optimise_diverse_sol: Optional[bool] = True, solver: Optional[Solver] = None, ) -> AsyncIterator[Result]: """Solves the Instance to find diverse solutions using its given solver configuration. Finds diverse solutions to the given MiniZinc instance using the given solver configuration. Every diverse solution is yielded one at a time. If a reference solution is provided the diverse solutions are generated around it. For more information regarding this methods and its arguments, see the documentation of :func:`~MiniZinc.Instance.diverse_solutions`. Yields: Result: (TODO) A Result object containing the current solving status, values assigned, and statistical information. """ from .helpers import ( _add_diversity_to_div_model, _add_diversity_to_opt_model, ) # Loads diverse solution generator if MiniZinc Data Annotator is present if mzn_analyse is None: mzn_analyse = MznAnalyse.find() if mzn_analyse is None: raise ConfigurationError( "mzn-analyse executable could not be located" ) # Create a temporary file in which the diversity model (generated by mzn-analyse) is placed div_file = tempfile.NamedTemporaryFile( prefix="mzn_div", suffix=".mzn", delete=False ) try: # Extract the diversity annotations. with self.files() as files: div_anns = mzn_analyse.run( files, get_diversity_anns=True, inline_includes=InlineOption.NON_LIBRARY, remove_items=["output"], remove_anns=["mzn_expression_name"], remove_litter=True, mzn_output=Path(div_file.name), )["get-diversity-annotations"] # Objective annotations. obj_anns = div_anns["objective"] variables = div_anns["vars"] if len(variables) <= 0: raise MiniZincError(message="No distance measure is specified") if solver is None: solver = self._solver inst = Instance(solver, Model(Path(div_file.name)), self._driver) max_gap = None # Place holder for max gap. prev_solutions = None # Place holder for prev solutions # Number of total diverse solutions - If not provided use the count provided in the MiniZinc model div_num = ( int(div_anns["k"]) if num_diverse_solutions is None else num_diverse_solutions ) # Increase the solution count by one if a reference solution is provided if reference_solution: div_num += 1 # Initial (re-)optimisation run with inst.branch() as child: # Add constraints to the model that sets the decision variables to the reference solution, if provided if reference_solution: if ( isinstance(reference_solution, Result) and is_dataclass(reference_solution.solution) and not isinstance(reference_solution.solution, type) ): solution_obj = asdict(reference_solution.solution) else: assert isinstance(reference_solution, dict) solution_obj = reference_solution for k, v in solution_obj.items(): if k not in ("objective", "_output_item", "_checker"): child[k] = v # We will extend the annotated model with the objective and vars. child = _add_diversity_to_opt_model(child, obj_anns, variables) # Solve original model to optimality. if minizinc.logger.isEnabledFor(logging.INFO): model_type = "opt" if obj_anns["sense"] != "0" else "sat" minizinc.logger.info( f"[Sol 1] Solving the original ({model_type}) model to get a solution" ) res: Result = await child.solve_async() # No (additional) solutions can be found, return from function if res.solution is None: return if reference_solution is None: yield res # Calculate max gap. max_gap = ( (1 - int(obj_anns["sense"]) * float(div_anns["gap"])) * float(res["div_orig_opt_objective"]) if obj_anns["sense"] != "0" else 0 ) # Store current solution as previous solution prev_solutions = asdict(res.solution) for i in range(2, div_num + 1): with inst.branch() as child: minizinc.logger.info( f"[Sol {i}] Generating diverse solution {i}" + (" (optimal)" if optimise_diverse_sol else "") ) # We will extend the annotated model with the objective and vars. child = _add_diversity_to_div_model( child, variables, div_anns, max_gap, prev_solutions, ) # Solve div model to get a diverse solution. res = await child.solve_async() # No (additional) solutions can be found, return from function if res.solution is None: return # Solve diverse solution to optimality after fixing the diversity vars to the obtained solution if optimise_diverse_sol: # Solution as dictionary sol_div = asdict(res.solution) # COMMENDTED OUT FOR NOW: Merge the solution values. # sol_dist = dict() # for var in variables: # distvarname = "dist_"+var["name"] # sol_dist[distvarname] = (sol_div[distvarname]) # Solve opt model after fixing the diversity vars to the obtained solution with inst.branch() as child: child = _add_diversity_to_opt_model( child, obj_anns, variables, sol_div ) # Solve the model res = await child.solve_async() # No (additional) solutions can be found, return from function if res.solution is None: return # COMMENDTED OUT FOR NOW: Add distance to previous solutions # sol_opt = asdict(res.solution) # sol_opt["distance_to_prev_vars"] = sol_dist yield res # Store current solution as previous solution curr_solution = asdict(res.solution) # Add the current solution to prev solution container assert prev_solutions is not None for var in variables: prev_solutions[var["prev_name"]].append( curr_solution[var["name"]] ) finally: # Remove temporary file created for the diversity model div_file.close() os.remove(div_file.name)
[docs] async def solutions( self, time_limit: Optional[timedelta] = None, nr_solutions: Optional[int] = None, processes: Optional[int] = None, random_seed: Optional[int] = None, all_solutions: bool = False, intermediate_solutions: Optional[bool] = None, free_search: bool = False, optimisation_level: Optional[int] = None, verbose: bool = False, debug_output: Optional[Path] = None, timeout: Optional[timedelta] = None, **kwargs, ) -> AsyncIterator[Result]: """An asynchronous generator for solutions of the MiniZinc instance. This method provides an asynchronous generator for the solutions of the MiniZinc instance. Every (intermediate) solution is yielded one at a time, the last item yielded from the generator will not contain a new solution, but will return the final Status and all remaining statistical values. For more information regarding this methods and its arguments, see the documentation of :func:`~MiniZinc.Instance.solve`. Yields: Result: A Result object containing the current solving status, values assigned, and statistical information. """ # rewrite deprecated option `timeout` if timeout is not None and time_limit is None: warnings.warn( "The usage of the `timeout` parameter is deprecated, please use the `time_limit` parameter instead.", DeprecationWarning, stacklevel=1, ) time_limit = timeout method = self.method # Ensure self.analyse() has been executed # Set standard command line arguments cmd: List[Union[str, Path]] = [ "--output-mode", "json", # Ensure MiniZinc's solutions are given as parsable JSON "--output-time", # Output MiniZinc recorded time with every solution "--output-objective", # Output objective value with every solution "--statistics", # Enable statistics ] # Add the model's evaluated output item to the json output object if self.has_output_item: cmd.append("--output-output-item") # Process number of solutions to be generated if all_solutions: if nr_solutions is not None: raise ValueError( "The number of solutions cannot be limited when looking " "for all solutions" ) if method == Method.SATISFY: if "-a" not in self._solver.stdFlags: raise NotImplementedError( "Solver does not support the -a flag" ) cmd.append("--all-solutions") else: if "-a-o" not in self._solver.stdFlags: raise NotImplementedError( "Solver does not support the -a-o flag" ) cmd.append("--all-optimal") elif nr_solutions is not None: if nr_solutions <= 0: raise ValueError( "The number of solutions can only be set to a positive " "integer number" ) if self.method == Method.SATISFY: if "-n" not in self._solver.stdFlags: raise NotImplementedError( "Solver does not support the -n flag" ) cmd.extend(["--num-solutions", str(nr_solutions)]) else: if "-n-o" not in self._solver.stdFlags: raise NotImplementedError( "Solver does not support the -n-o flag" ) cmd.extend(["--num-optimal", str(nr_solutions)]) elif intermediate_solutions: if ( "-i" not in self._solver.stdFlags and "-a" not in self._solver.stdFlags ): raise NotImplementedError( "Solver does not support the -i and -a flags" ) cmd.append("--intermediate-solutions") elif (intermediate_solutions is None and time_limit is not None) and ( "-i" in self._solver.stdFlags or "-a" in self._solver.stdFlags ): # Enable intermediate solutions just in case to ensure that there is # a best solution available at the time limit. cmd.append("--intermediate-solutions") # Set number of processes to be used if processes is not None: cmd.extend(["--parallel", str(processes)]) # Set random seed to be used if random_seed is not None: cmd.extend(["--random-seed", str(random_seed)]) # Enable free search if specified if free_search: cmd.append("--free-search") # Set compiler optimisation level if specified if optimisation_level is not None: cmd.extend(["-O", str(optimisation_level)]) # Set time limit for the MiniZinc solving if time_limit is not None: cmd.extend( ["--time-limit", str(int(time_limit.total_seconds() * 1000))] ) if verbose: cmd.append("--verbose") for flag, value in kwargs.items(): if not flag.startswith("-"): flag = "--" + flag if isinstance(value, bool): if value: cmd.append(flag) else: cmd.extend([flag, value]) multiple_solutions = ( all_solutions or intermediate_solutions or (nr_solutions is not None) ) # Add files as last arguments with self.files() as files, self._solver.configuration() as solver: assert self.output_type is not None cmd.extend(files) status = Status.UNKNOWN code = 0 solution = None statistics: Dict[str, Any] = {} # Whether the status has changed since the last `yield` status_changed = False # Run the MiniZinc process proc = await self._driver._create_process(cmd, solver=solver) assert isinstance(proc.stderr, asyncio.StreamReader) assert isinstance(proc.stdout, asyncio.StreamReader) read_stderr = asyncio.create_task(_read_all(proc.stderr)) try: async for obj in decode_async_json_stream( proc.stdout, cls=MZNJSONDecoder, enum_map=self._enum_map ): new_solution, new_status, statistics = ( self._parse_stream_obj(obj, statistics) ) if new_status is not None: status = new_status status_changed = True elif new_solution is not None: solution = new_solution if status == Status.UNKNOWN: status = Status.SATISFIED if multiple_solutions: yield Result(status, solution, statistics) solution = None statistics = {} status_changed = False code = await proc.wait() except asyncio.IncompleteReadError as err: # End of Stream has been reached # Read remaining text in buffer code = await proc.wait() remainder = err.partial.strip() # Parse and output the remaining statistics and status messages if remainder != b"": try: obj = json.loads( remainder, cls=MZNJSONDecoder, enum_map=self._enum_map, ) except json.JSONDecodeError as e: raise MiniZincError( message=f"MiniZinc driver output a message that cannot be parsed as JSON:\n{repr(remainder)}" ) from e new_solution, new_status, statistics = ( self._parse_stream_obj(obj, statistics) ) if new_status is not None: status = new_status status_changed = True elif new_solution is not None: solution = new_solution if status == Status.UNKNOWN: status = Status.SATISFIED if multiple_solutions: yield Result(status, solution, statistics) solution = None statistics = {} status_changed = False except (asyncio.CancelledError, MiniZincError, Exception): # Process was cancelled by the user, a MiniZincError occurred, or # an unexpected Python exception occurred # First, terminate the process if sys.platform == "win32": with open( f"\\\\.\\pipe\\minizinc-{proc.pid}", mode="w" ) as named_pipe: # Trigger MiniZinc termination named_pipe.write("") else: proc.terminate() _ = await proc.wait() # Then, reraise the error that occurred raise if not multiple_solutions: yield Result(status, solution, statistics) elif status_changed or statistics != {}: yield Result(status, None, statistics) # Raise error if required stderr = await read_stderr if code != 0 or status == Status.ERROR: raise parse_error(stderr) if debug_output is not None: debug_output.write_bytes(stderr)
[docs] @contextlib.contextmanager def branch(self) -> Iterator["Instance"]: # TODO: Self reference """Create a branch of the current instance Branches from the current instance and yields a child instance. Any changes made to the child instance can not influence the current instance. WARNING: The branch method assumes that no changes will be made to the parent method while the child instance is still alive. Changes to the parent model are locked until the child method are destroyed. Yields: Instance: branched child instance """ child = self.__class__(self._solver) child._parent = self # Copy current information from analysis child._method_cache = self.method child.output_type = self.output_type child._output_cache = self._output_cache child._input_cache = self._input_cache with self._lock: yield child
[docs] @contextlib.contextmanager def files(self) -> Iterator[List[Path]]: """Gets list of files of the Instance Files will create a list of paths to the files that together form the Instance. Parts of the Instance might be saved to files and are only guaranteed to exist while within the created context. Yields: List of Path objects to existing and created files """ files: List[Path] = [] fragments: List[str] = [] data: Dict[str, Any] = {} inst: Optional["Instance"] = self while inst is not None: for k, v in inst._data.items(): if isinstance(v, UnknownExpression) or k in data: fragments.append(f"{k} = {v};\n") elif isinstance(v, EnumMeta): data[k] = [str(mem) for mem in v.__members__] else: data[k] = v fragments.extend(inst._code_fragments) files.extend(inst._includes) inst = inst._parent gen_files = [] try: if len(data) > 0: file = tempfile.NamedTemporaryFile( prefix="mzn_data", suffix=".json", delete=False ) gen_files.append(file) file.write( json.dumps( data, cls=MZNJSONEncoder, ensure_ascii=False ).encode() ) file.close() files.append(Path(file.name)) if len(fragments) > 0 or len(files) == 0: file = tempfile.NamedTemporaryFile( prefix="mzn_fragment", suffix=".mzn", delete=False ) gen_files.append(file) for code in fragments: file.write(code.encode()) file.close() files.append(Path(file.name)) yield files finally: for file in gen_files: file.close() os.remove(file.name)
@property def method(self) -> Method: """Query the Method used by the Instance. Returns: Method: Method of the goal used by the Instance. """ if self._method_cache is None: self.analyse() assert self._method_cache is not None return self._method_cache @property def input(self) -> Dict[str, Type]: """Query the input parameters of the Instance. Returns: Dict[str, Type]: A mapping from parameter identifiers to their Types. """ if self._input_cache is None or self._method_cache is None: self.analyse() assert self._input_cache is not None return self._input_cache @property def output(self): """Query the output parameters of the Instance. Returns: Dict[str, Type]: A mapping from parameter identifiers to their Types. """ if self._output_cache is None or self._method_cache is None: self.analyse() assert self._output_cache is not None return self._output_cache @property def has_output_item(self) -> bool: """Query whether the instance constains an output item. Returns: bool: whether the instance contains an output item. """ if self._has_output_item_cache is None: self.analyse() assert self._has_output_item_cache is not None return self._has_output_item_cache
[docs] def analyse(self): """Discovers basic information about a CLIInstance Analyses a given instance and discovers basic information about set model such as the solving method, the input parameters, and the output parameters. The information found will be stored among the attributes of the instance. """ with self.files() as files: assert len(files) > 0 output = self._driver._run( ["--model-interface-only"] + files, self._solver ) interface = None for obj in decode_json_stream(output.stdout): if obj["type"] == "interface": interface = obj break assert interface is not None old_method = self._method_cache self._method_cache = Method.from_string(interface["method"]) self._input_cache = {} for key, value in interface["input"].items(): self._input_cache[key] = _to_python_type(value) old_output = self._output_cache self._output_cache = {} for key, value in interface["output"].items(): self._output_cache[key] = _to_python_type(value) self._has_output_item_cache = interface.get("has_output_item", True) if self._has_output_item_cache: self._output_cache["_output_item"] = str if self._checker: self._output_cache["_checker"] = str if self.output_type is None or ( issubclass(self.output_type, _GeneratedSolution) and ( self._output_cache != old_output or self._method_cache != old_method ) ): fields = [] self._field_renames = [] if ( self._method_cache is not Method.SATISFY and "objective" not in self._output_cache ): fields.append(("objective", Number)) for k, v in self._output_cache.items(): if k in ["_output_item", "_checker"]: fields.append((k, str, field(default=""))) elif iskeyword(k): warnings.warn( f"MiniZinc field '{k}' is a Python keyword. It has been " f"renamed to 'mzn_{k}'", SyntaxWarning, stacklevel=1, ) self._field_renames.append((k, "mzn_" + k)) fields.append(("mzn_" + k, v)) else: fields.append((k, v)) minizinc.logger.debug( f"CLIInstance:analyse -> output fields: " f"{[f[0:2] for f in fields]}" ) methods = {} if self._has_output_item_cache: methods["__str__"] = lambda myself: ( myself.__repr__() if myself._output_item == "" else myself._output_item ) if self._checker: methods["check"] = lambda myself: myself._checker self.output_type = make_dataclass( "Solution", fields, bases=(_GeneratedSolution,), namespace=methods, frozen=True, )
def _reset_analysis(self): self._method_cache = None
[docs] @contextlib.contextmanager def flat( self, time_limit: Optional[timedelta] = None, optimisation_level: Optional[int] = None, timeout: Optional[timedelta] = None, **kwargs, ): """Produce a FlatZinc file for the instance. Args: time_limit (Optional[timedelta]): Set the time limit for the process of flattening the instance. TODO: An exception is raised if the timeout is reached. optimisation_level (Optional[int]): Set the MiniZinc compiler optimisation level. - 0: Disable optimisation - 1: Single pass optimisation (default) - 2: Flatten twice to improve flattening decisions - 3: Perform root-node-propagation - 4: Probe bounds of all variables at the root node - 5: Probe values of all variables at the root node **kwargs: Other flags to be passed to the compiler. ``--`` can be omitted in the name of the flag. If the type of the flag is Boolean, then its value signifies its occurrence. Yields: Tuple containing the files of the FlatZinc model, the output model and a dictionary the statistics of flattening """ # rewrite deprecated option `timeout` if timeout is not None and time_limit is None: warnings.warn( "The usage of the `timeout` parameter is deprecated, please use the `time_limit` parameter instead.", DeprecationWarning, stacklevel=1, ) time_limit = timeout cmd: List[Any] = ["--compile", "--statistics"] fzn = tempfile.NamedTemporaryFile( prefix="fzn_", suffix=".fzn", delete=False ) cmd.extend(["--fzn", fzn.name]) fzn.close() ozn = tempfile.NamedTemporaryFile( prefix="ozn_", suffix=".fzn", delete=False ) cmd.extend(["--ozn", ozn.name]) ozn.close() if time_limit is not None: cmd.extend( ["--time-limit", str(int(time_limit.total_seconds() * 1000))] ) # Set compiler optimisation level if specified if optimisation_level is not None: cmd.extend(["-O", str(optimisation_level)]) for flag, value in kwargs.items(): if not flag.startswith("-"): flag = f"--{flag}" if isinstance(value, bool): if value: cmd.append(flag) else: cmd.extend([flag, value]) # Add files as last arguments with self.files() as files: cmd.extend(files) # Run the MiniZinc process output = self._driver._run(cmd, solver=self._solver) statistics: Dict[str, Any] = {} matches = re.findall(rb"%%%mzn-stat:? (\w*)=([^\r\n]*)", output.stdout) for m in matches: set_stat(statistics, m[0].decode(), m[1].decode()) try: yield fzn, ozn, statistics finally: os.remove(fzn.name) os.remove(ozn.name)
[docs] def add_file(self, file: ParPath, parse_data: bool = True) -> None: self._reset_analysis() return super().add_file(file, parse_data)
[docs] def add_string(self, code: str) -> None: self._reset_analysis() return super().add_string(code)
def _parse_stream_obj(self, obj, statistics): solution = None status = None if obj["type"] == "solution": tmp = obj["output"]["json"] if "_objective" in tmp: tmp["objective"] = tmp.pop("_objective") if "_output" in tmp: tmp["_output_item"] = tmp.pop("_output") for before, after in self._field_renames: tmp[after] = tmp.pop(before) if "_checker" in statistics: tmp["_checker"] = statistics.pop("_checker") assert self.output_type is not None solution = self.output_type(**tmp) statistics["time"] = timedelta(milliseconds=obj["time"]) elif obj["type"] == "time": statistics["time"] = timedelta(milliseconds=obj["time"]) elif obj["type"] == "statistics": for key, val in obj["statistics"].items(): set_stat(statistics, key, str(val)) elif obj["type"] == "status": status = Status.from_str(obj["status"]) elif obj["type"] == "checker": if "raw" in obj["output"]: statistics["_checker"] = obj["output"]["raw"] else: # TODO: can we ensure this is made JSON? statistics["_checker"] = obj["output"]["dzn"] return solution, status, statistics
def _to_python_type(mzn_type: dict) -> Type: """Converts MiniZinc JSON type to Type Converts a MiniZinc JSON type definition generated by the MiniZinc CLI to a Python Type object. This can be used on types that result from calling ``minizinc --model-interface-only``. Args: mzn_type (dict): MiniZinc type definition as resulting from JSON Returns: Type: Type definition in Python """ basetype = mzn_type["type"] pytype: Type # TODO: MiniZinc does not report enumerated types correctly if basetype == "bool": pytype = bool elif basetype == "float": pytype = float elif basetype == "int": pytype = int elif basetype == "string": pytype = str elif basetype == "ann": pytype = str elif basetype == "tuple": pytype = list elif basetype == "record": pytype = dict else: warnings.warn( f"Unable to determine minizinc type `{basetype}` assuming integer type", FutureWarning, stacklevel=1, ) pytype = int if mzn_type.get("set", False): if pytype is int: pytype = Union[Set[int], range] # type: ignore else: pytype = Set[pytype] # type: ignore dim = mzn_type.get("dim", 0) while dim >= 1: # No typing support for n-dimensional typing pytype = List[pytype] # type: ignore dim -= 1 return pytype async def _read_all(stream: asyncio.StreamReader): output: bytes = b"" while not stream.at_eof(): try: output += await stream.read() return output except asyncio.LimitOverrunError as err: output += await stream.readexactly(err.consumed) return output